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J. Phyx A: Math. Gen. 26 (1993) 261-280. Printed in the UK 

Chaotic motion on Hamiltonian tori 

A yon Kempis and H Lustfeld 
Forschungszentmm Jiilich P A ) ,  Postfach 1913, D-W-5170 Jiilich, Federal Republic of 
Germany 

W i v e d  18 March 1992, in final form 27 July 1992 

Abslreet KAM ton are well known Io be that (finite!) pan of phase space in which the 
motion of a weakly F u r b e d  classical Hamiltonian system remains integrable. M o w e r ,  
they are tamers in Ihe phase space of systems with two d e w s  of kedom. We show 
that elfain Hamiltonian syslems contain invariant noflm-plor fori with compressible flow. 
Using as an example an eledmn moving in elenromagnetic fields which are periodic 
in space we demonstrate: 0) that strange attractors (and repellers) of well known 
autonomous or (quasi-)pericdically timedliven systems may occur on such Strongr rOn; 
(ii) that one may 6nd boniss consisting of non-regular Hamiltonian tori in systems with 
any number of degrees of freedom (the flow on such barriers is non-chaotic, though); 
and Cii) Ihat certain RAM Ion transform into non-regular tori-rather Ihan breaking 
up-when the perturbation be"s suong. 

1. Introduction 

In near-integrable Hamiltonian systems, integrable motion survives on so-called KAM 
tori [l-31. 'Bansforming to appropriate action-angle mriables the equations of motion 
on a KAM toms situated at I = I, in action space can be cast into the form 

Z= 0 and & = n(I, )  at I = I,. (1.1) 

The motion on a KAM torus is universal in the sense that it depends on the frequency 
vector n(1,) only and not on any detail of the nearly integrable system. In the 
neighbourhood of such a KAM torus the *-dependent term of the Hamiltonian 
(provided that the latter depends analytically on I and a) must be at least quadratic 
in r - I,: 

N 
H = H d I )  + E (1, - l u u ) h v , p ( ~ , * ) ( l p  - Iup).  (1.2) 

v,p=l 

Here e is a small parameter indicating the weak non-integrability of the system. 
Let us mnsider Hamiltonians which are only [inear in I - I,,: 

H = Hu(I)  + ~ ( 1 -  I , ) .  G ( I , Q ) .  (1.3) 
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The parameter q need not be small. Clearly an invariant torus exists at I = I,,t. 
More general analytic Hamiltonians containing invariant ton which need not be KAM 
ton can be found by replacing the term I - I,, in (1.3) with a vector field F :  

A von k2mpis and H Lurtfeid 

H = Hu(I)  + q F ( I ) .  G ( I ,  @) 

F ( I , )  = 0 for I, E M ,  dim At,, = n < N - 1 (1.4) 

where M ,  is an ndimensional manifold in action space. Hamiltonians of the form 
(1.3) are contained in (1.4) for n = 0. For n > 0 one finds an invariant t o m  for every 
action value I, on the manifold M,. Such tori are therefore not isolated in phase 
space: their union forms an invariant manifold with dimension D, = N + n < 2 N  - 1 
(note that for D, = 2N - 1 these tori form a barrier in phase space, cf section 4.2). 
The equations of motion on such a t o m  situated at I = I .  E M ,  read 

For smaU q the probability is finite that these tori will again be KAM tori-which 
means that, applying KAM perturbation theory, one may find a time-independent 
canonical transformation of the angles alone removing the term of the Hamiltonian 
(1.4) which is linear in I - I, [4,51 (two simple explicit examples are given [6]; cf 
also [q). Even for small 1) the procedure does not converge in the neighbourhood 
of resonances which means that (generically) it will not converge in any q-interval. 
The pints on the qaxis where such a transformation exists form a set of finite 
measure, though, and the latter tends to 1 with q -+ 0. For large 1) the strength 
of the perturbation will generically destroy all KAM tori, and the same is true in the 
strong-coupling limit H,, -+ 0 (* w,(I.) + 0). We call these tori which are not of 
the KAM type non-regular tori. In contrast to the regular tori in integrable and nearly 
integrable systems (the latter are the KAM tori) they clearly cannot be classified by 
just one frequency vector 0. 

Whereas the equations of motion (1.1) on KAM ton are trivially integrable the 
motion on these non-regular ton is of a different type, as may already have been 
guessed from the equations of motion (1.5). These show that the motion on the 
invariant tori of systems of the type (1.4) are usually dissipative because the divergence 
rate of the flow on these ton, ie. 

needs not vanish# (note that the vector function G ( I ,  @) is only required to be 2n- 
periodic in the angles a). Therefore, attractors may occur in the flow on non-regular 

t A manifold in phase space is called an mvmianl manifold if the direction of the Row (i.e. of the phase 
space wlodty) is welywhere tangential to it. 
$ Since the ensemble density p m  in the phase-space of the variables z is subject to the continuity equation 
p . tp ,V. .~=OonehasV, .~= Vm/Vm where V. = I / p .  isthespecificphase-spacevolume. l'hus, 
the local divergence rale equals the relative change of the speci6c phase space wlume per unit time. In 
Hamiitoniansystemsz = ( I ,*) ,and thus V=. i  = V*.*+V,.i= V+.(V,H)+V,.(-V,H) = 0 
which implies p. = 0 (Liouviiie's law). ,halogously, on an invariant N - t o m  situated at I = I ,  in 
action space one tinds that V+ .+ I I . =  V+/V+ where V+ = I/& is the Ndimensional speci6c fm 
volume (whereas dim V. = 2N in general). 
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tori. This is no contradiction to Liouville's theorem concerning the conservation of 
the 2N-dimensional phase-space volume since it vanishes identically on a given N- 
tONS, and the Same holds for all other poicar6 invariants. Thus, these conservation 
laws do not forbid dissipative or antidissipative motion on invariant ton. On KAM 
tori the system still 'feels' the presence of the N commuting conserved quantities of 
the unperturbed system, whereas on non-regular tori the situation may be compared 
with a system having N non-commuting conserved quantities of the motion. In such 
systems the flow is restricted to an N-dimensional manifold but on this manifold 
chaotic motion is not usually excluded. Dissipative motion on invariant ton must 
naturally be compensated for by antidissipative motion in their neighbourhood (see 
later). Furthermore, the flow on tori cannot be dissipative everywhere since the mean 
local divergence rate vanishes due to the 2n-periodicity of the equations of motion: 

)V,.&(I,,@)dNQ = O .  

This is in contrast to conventional dissipative systems where the local divergence rate 
is usually negativedefinite. Wr instance, in the well lmown systems of Lorenz IS] or 
Duffing (cf section 4.1) the value of the divergence rate V, .k is uniform in phase 
space. 

Some aspects of the motion on tori have been discussed in recent studies in the 
context of dissipative systems. Grebogi and Battelino [9-111 demonstrated numerically 
that quasiperiodic motion does generically persist on invariant N-tori (N = 3 or 
4) for finite perturbations while Baesens et al 1121 concentrated on the study of 
resonances and global bifurcations in systems of three weakly coupled oscillators. In 
these studies the continuous dynamics is always rcduced to discrete maps by analysing 
a Poincarb or return map of the motion on the torus. This is only possible if at least 
one integer linear combination of the angle variables advances monotonically in time. 
As we will see, this excludes Hamiltonian systems with isolated invariant tori (which 
are implicitly considered in these studies) in the range of large perturbation (1) 2 1) 
or strong coupling (If, + 0) which we will investigate later-simply because then 
there are (generically) no angles, or integer linear combinations of angles, advancing 
monotonically for indefinite time. In the long-time limit the motion is thus confined to 
relatively small parts of the tom where the local divergence rate is negativedefinite 
and-after a transient phase-the trajectories converge towards attracton which (as 
we will show) may also be strange onest. Since the divergence rate vanishes when 
averaged Over the whole torus it is no surprise to find (strange) attractors also in 
the study of the time-reversed flaw. These attractors are repellers of the non-time- 
reversed flow. We call non-regular tori containing strange attractors (or repellers) 
snange mi for short 

In this study we always restrict our attention to the motion on non-regular ton. 
As the flow in phase space as a whole cannot be compressible, dissipative motion 
on such ton has naturally to be compensated for by antidissipative motion in their 
neighbourhood, Le. in action space, and vice versa. For sufficiently large perturbation 
strength-1) 2 1-nearly all trajectories on these tori tend towards attractors in the 
long-time limit Therefore, for nearly all initial conditions non-regular tori are strongly 
repulsive in action space if 1) is sufficiently large. Trajectories starting near non-regular 

t In lhe previously mentioned paper (17.1 Raesens d d describe another [om of chaolic motion on 
invarianf tori, namely chaotic varialions of the winding numbers, which they call 'toroidal chaos'. 
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tori can approach such a torus only during the transient phase, provided the initial 
conditions in the angles are situated near a repellcr, or Y the initial conditions in the 
angles are situated on a repeller (then exponentially fast for indefinite time). Some 
explicit examples have been worked out in [6] (see also [q). 

The paper is organized as follows. In section 2 we demonstrate that Hamiltonians 
of the form (1.3) and (1.4) do occur in physics, namely for a single charged particle 
(e.g. an electron) moving in certain electromagnetic fields which are periodic in space. 
Section 3 is devoted to the study of the flow on isolated strange tori containing well 
known strange attractors of autonomous systems, such as those studied by Larenz [SI 
or Rasler [13]. Non-isolated non-regular Hamiltonian tori are inspected in section 
4. We find that: (i) well known attractors of periodically or quasiperiodjcally driven 
systems occur on such tori e.g. those found in Duffing’s oscillator system [14, U]; 
(U) the flow on non-isolated N-tori forming a barrier cannot he chaotic (but may 
contain strange non-chaotic attractors [16] if N > 3); and (Ui) periodic motion may 
be impossible if N 2 3. Conclusions are given in section S. 

A von Kempis and H Lustfeld 

2. An electron moving on non-regular Hamiltonian tori 

Before studying the properties of the flow on non-regular Hamiltonian tori in more 
detail let us show that such tori, both isolated and non-isolated ones, may indeed occur 
in physical systems, namely for an electron moving in certain stationary or (quasi-) 
periodically timedependent electromagnetic fields which are periodic in space. 

The Hamiltonian of a non-relativistic ‘classical electron’ (without spin) moving in 
an electromagnetic field reads (in MKS units) 

(2.1) 
1 ‘H = - ( P  - eA(r ,  t))’ + ec$(r, t )  

2% 

where A and 4 are the magnetic vector potential and the electric potential, 
respectively, e = - eo is the charge of the electron, and P = me+ + e A ( r , i )  is its 
canonical momentum. If one can find a constant Po such that-for some gauge-the 
electric potential fulfils the condition 

the Hamiltonian (2.1) takes the form 

For vector potentials A which are periodic in space, Le. which fulfil 

A(T + r ; )  = A ( r )  i = 1,2,3 (2.4) 

for three linearly independent vectors ri=1,2,3, the Hamiltonian (2.3) may be written 
either in the form (1.3) or in the form (1.4). Because of the periodicity properties 
of the electromagnetic potentialst one can always fmd a linear transformation to 

t nese imply a corresponding apace periodicity of the electromagnetic fields and (ria the inhomogeneous 
Maxwell equations) of the charge and current densities producing these fields 
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action-angle mrdinates. For magnetic vector potentials whose space periodicity is 
characterized by cubic basis cells, Le. 

+I = (xu,O,O) T2 = (O,YO,O) r3 = ( O , O , ~ U )  (2.5) 
one has, eg., 
*=27r(",-,--) Y Z  and I=--(xuPn, 1 yuPy, zUP,) 

xo Yo 2a 
and the Hamiltonian (23) is transformed ta 

(27) 
The Hamiltonian (27) is of the type (1.3) if A has three linearly independent 
components whereas it is of the type (1.4) if A has m < 3 linearly independent 
components, Le. 

m<z 

j = 1  
A = cjA, with A j ( r  + ri=,,2,3) = A,(.) j < m < 3. (24 

There is an invariant torus for action vectors satisfying the m conditions 

(2.9) 
For m = 1 this condition specifies a plane M z  that divides the threedimensional 
action space into two parts which cannot be joined by trajectories. Thus, the invariant 
tori with actions I ,  E Mz form a barrier in phase space. For m = 2 the two linearly 
independent conditions specify a straight line M,.  Therefore, the invariant ton with 
actions I.  E MI form a fourdimensional planar area in the sixdimensional phase 
space. 

It should be emphasized that the Hamiltonian (2.1) is gauge-invariant, Le. a 
canonical transformation exists which leaves it form invariant with respect to a gauge- 
transformation of the electromagnetic potentials [6]. Clearly, this is not the case for 
the Hamiltonians (23) and (27) since the condition (2.2) is not gauge-invariant. This 
does not mean that the presence of non-regular tori depends on the choice of the 
gauge. Rather, it depends on the choice of the electric (or: electromagnetic) field@). 

For later use (namely in section 4.1) we note that non-regular Hamiltonian 
tori may occur in the non-relativistic motion of an electron in timedependent 
fields as well, and also when the motion is restricted to only one or two spatial 
degrees of beedom. Then 

= (2a/zu)i  = W ~ , ~ ( I * )  = constant for I, E M3-m which implies 2 = 0 
whereas in the general case, i.e. if the electric potential does not fulfil the condition 
(22), or beyond the invariant tori considered here, i = 0 implies A, = 0 and 

With regard to this latter case let, e.g., A, = 0. 

aA,laz = aA,/az = o. 
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3. Isolated non-regular Hamiltonian tori 

We proceed to show that, for any given attractor of a dynamical system which can 
be described by autonomous ordinary ditferential equations, one can easily find a 
Hamiltonian system containing an isolated invariant non-regular torus where this 
attractor occurs, provided the extension of the attractor is finite. Thus, if the 
dissipative system-written in the form of firstader differential equation-nsists 
of no more than three equations one may specify electromagnetic fields such that a 
non-relativistic electron with appropriate momentum moves on a non-regular torus 
containing any such attractor. As an example we consider a torus containing the 
strange attractor of Rossler's system [13]. In section 3.2 we investigate certain 
symmetry properties of the flow on these somewhat special non-regular tori related 
to fixed points or timareversal, respectively. In section 3.3 we explain the method 
used to End all attractors on isolated non-regular tori and give a short account of 
our results concerning the strange 'Rdssler torus' which contains several, and in many 
cases coexisting, attractors, namely two point attractors and two periodic attractors 
@nit cycles) where the latter transform into strange attractors via sequences of 
pericd-doubligs when 7 is decreased or, in the case of Rosslcr's strange attractor, 
increased. In addition, every attractor is connected to a structurally identical repeller 
by a one-to-one transformation. 

3.1. Attractors of autonomous ystems on non-regular fori 

The procedure is straightfolward. Thke any (nonlinear) autonomous system of 
ordinary differential equations with A4 control parameters. If necessary transform 
it into a system of first order i = f(z;pl, . . . ,pM) or, in scalar notation, 

A von Kempis and H Lustfeki 

*; =fi(" j=I  ,",, N;Pr=I, ..., M) i =  l , . . . , N .  (3.1) 

If it contains an attractor of finite size in the N-dimensional phase space of the 
variables z transform (rescale and/or shift) these variables-if necessary-such that 
the attractor is situated near the origin. Then replace 

where a is a new parameter. In this way one creates the modified system 

It is clear that due to 
X lim a s i n - = x  

2 / * 4  a 

(3.3) 

0.4) 

the modified system (3.3) tends to the original one (3.1) for z/a + 0. Since the 
right-hand side of (3.3) is 2n-periodic in the new variables @ = z/a, substitution of 
variables leads to 

. 1  
@; = -fi(asin@,;p,). Q (3.5) 
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Let us identify the right-hand side of this system with the vector field G(B): 

G(B) 3 - f ( a ~ i n @ ~  ,... , a ~ i n @ ~ ; p ,  ,..., pM). (3.6) 
1 
a 

This vector field is 2~-periodic in the variables B (as required). If we insert it into 
the equations of motion (1.5) for n = 0 we get the system 

rl 
(3.7) & = WU(ZU) + - f ( a s i n  @l,.. . , asin aN;pl,. . . , pM) 

a 

on the torus situated at Z = Iu. Denoting by a prime the derivative with respect to 
a scaled time 7 = qt  we arrive at 

Starting from a Hamiltonian of the form 

H=- Hu(r) + ( I  - Z u ) .  G(I ,  *) 
7 (3.9) 

rather than from one of the form (1.3) and proceeding as before one arrives at an 
equation of motion of the Same form as (3.8) but with the derivative taken with 
respect to the unscaled time variable t: 

(3.10) 
. w z  1 

17 a 
Q=- 0' 0) + -f(asinal ,... ,asin+,;p, ,... ,pM).  

In the Limit 

(3.11) 
X 

a 
a = -  + O  and 7-m 

the system (3.8) tends to x' = f (z ;pl , .  . . , pM), ie. to the original system but with 
respect to scaled time, and the system (3.10) tends to the original system (3.1). In this 
limit an attractor of the original system situated near the origin will therefore also 
show up in the earlier systems of equations of motion (3.8) or (3.10), respectivelyt, 
in the neighbourhood of the origin and its equivalent locations, i.e. near 

Q = 2 d  1 E Z N .  (3.12) 

Note that the limiting case 17 = CO can be realized (alternatively) by the parameter 
values 

wu(Io) = 0 and . 17 = 1 (3.13) 

t ?here h a subtlety in the limit (3.11) on which we would like to comment: keeping the parameters 
{p.) ked lhe Lppunov exponents mnverge to those of the original attractor in the limit (3.11) if the 
attractor is structurally 6fable. If it is not we o n  find parameters { p , }  depending on o and 9 such thal 
the lyapunw exponents and the {pr} converge to those of the original attractor in this limit. 
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ie. by starting with the Hamiltonian 

A von Kempis and H Lusrfeld 

H = ( I - I ” ) . G ( % )  (3.14) 

to which we will refer below as the ‘perturbing system’ of the Hamiltonian (1.3). 
Clearly all finite-sized attractors occurring in autonomous systems of differential 

equations also occur on isolated invariant tori of Hamiltonian system?. which may be 
specified by the procedure described in this section. Yet, this statement is rigorous 
only in the h i t  a -+ CO. Fbr finite values of the scaling parameter a the behaviour 
near the origin-and its equivalent locationsdoes not change much Y a is large, 
cf the following example. We apply the previously described procedure to Rossler’s 
system [13] 

z = - y - 2  

y = z + a y  

i.= b + z ( z - c )  

(3.15) 

where a,  b, c are the control parameters. R W e r  [13] used 

a = 0.2 b = 0.2 c = 5.7. (3.16) 

If we identify system (3.15) with system (3.1) and insert it into equation (3.8) we find 
the following equations of motion on the torus situated at I = I,: 

W0,Z 
@; = - 11 +sin@, + asin@., (3.17) 

As discussed in section 2 it is easy to specify electromagnetic potentials such that 
the motion of a non-relativistic electron with appropriate momentum proceeds on an 
invariant 3-torus with given equations of motion. In the present case the vector 
potential may easily be found by comparing the foregoing equations of motion 
with the equations of motion on the non-regular torus of Hamiltonian (2.7) and 
resubstituting for the angles from (2.6). The necessary electric potential k defined 
by (2.2). Beyond the ‘Rossler torus’ the frequency w u ( P )  depends linearly on the 
canonical momentum, cf section 2 

For sufficiently large values of a one expects to find an attractor near the origin 
which should be vety similar to the strange attractor of Rossler’s system (3.15) if 
uu(Iu) = 0 and q = 1, which implies (as initial conditions) mer = -eA(r)  or 
(alternatively) in the limit 11 -+ CO. Figure 1 shows this attractor-ntred around an 
unstable fixed point-for a = 100 and Rossler’s control parameter values (3.16). The 
attractors are so simiiar that their plots look the same. For not too large a they can 
be distinguished, however, by computing their one-dimensional Lyapunov exponents 
with the algorithm of Wolf et al [17]. The definition of the Lyapunov exponents 
employed here is the more usual one-exponents relative to the base e-rather than 
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06. 

0 5. 

m,Inxlo-' - 2  -1  0 1 2 3 
@,In x 10.' 

Figure I. me 'R&sIer.like' attractor on the 'Msrler tom', centred amund an unstable 
k e d  pinl; 7 = m and OL = 100 (this value of m is used throughout). 

the one used in [17] (exponents relative to the base 2). For the 'Rossler-like' attractor 
displayed in figure 1 one h d s  

A, = 0.06 A, = 0 A, = -5.39 (3.18) 

while the original Rossler attractor is characterized by 

A, = 0.07 A, = 0 A, = -5.39 (3.19) 

which indicates a slightly more chaotic behaviourt. 

3.2 Symmetry analysis of the flow 

As discussed in the introduction, the motion far from the origin will greatly differ from 
the one near the origin in Hamiltonian systems of the form (1.3) or (3.9), respectively, 
since dissipative regions on tori have to be complemented by antidissipative ones. 
Much about this behaviour can be learned by exploiting the symmetry property of the 
sine function 

sin $0 = sin(7r - $0). (3.20) 

Let us look first at the k e d  points of the equations of motion (3.8) or (3.10), 
respectively, on strange tori. Assuming that at least one k e d  point -3, does exist- 
and every fixed point of the original system (3.1) implies the existence of such a fixed 
point in the limit Q -+ CO (and q -, 00 or, alternatively, wu(Iu) = 0 and q = 1)-the 

t '&ere is always a vanishing exponent Elated to the direction of the flow except for trajectories ending 
on a k e d  p in t  [18]. 
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existence of 2N - 1 further and nonequivalent fixed points follows from this symmetry 
relation if 

@ , + # $ r + Z r  l e Z  f o r a l l i = l ,  ..., N (3.21) 

a!q = a; ay1 = 7r - a; (3.22) 
any one of these 2N tixed points may be characterized by a string of N bits 

Q ~ I ~ - + N ]  = *,I  ,..., @[*"I) * , N  where ni=l , , , , ,N E {Q 1). (3.23) 

Among them we denote by [O,O,O] the fixed point next to the origin. Each k e d  
point [n,, ... , nN]  generates a lattice of equivalent fixed points with lattice mnstants 
27r in every component 

Where tixed points of the motion on a strange torus exist one will naturally 
perform a linear stability analysis of the motion near them. Since the right-hand side 
of an equation of motion vanishes at a fixed point, expanding system (1.5) for n = 0 
around h, leads to 

A von k2mp.k and H Lusrfeld 

since then one has a,,; # 7r - aJ.,i for all anglest. Using the notation 

[n,, ... ,nN] via 

(3.24) 

The eigenvalues of the matrix aG/ahP, I characterize the flow near B" (if e.g. 
all eigenvalues are negative the fixed point IS an attractor). Fbr vector fields G(Q) 
defined via (3.6) one has 

I? 

a G; 
I- - cos aG. 
a@,,,, 

Therefore, any fixed point [n,, . . . , n N ]  has a conjugaced partner [?i;i, .. . ,GI among 
the other 2N - 1 ones, namely 

with the opposite eigenvalues since cos p = -cos( 7r - 9). 
Comparing more generally the equations of motion of a point m to those of the 

conjugated point 
Q = (7r-aJ1, ... , 7 r  - a J N )  E Z - Q  (3.27) 

we see that % = -6. Furthermore, for vector fields G(m) defined via a relation 
of the form (3.6), the symmetry relation (3.20) of the sine function leads to 
G ( q  = G(Q). Therefore, the equations of motion of a point @ are fully equivalent 
to the time-reversed equations of motion of the conjugated p i n t  s, Stated more 
formally: if h ( t )  solves the equations of motion then &(-t) = 7r - @(-t)  is also 
a solution, and vice versa (since = h). Any trajectory has thus a counterpart 
under time-reversal which is simply shifted and reflected with respect to the original 
one by the transformation (3.27). As a mnsequence all attractors also occur in the 
time-reversed flow, yet transformed via (3.27). Every attractor of the motion forward 
in time is thus matched by a repeller of the Same type-cf the previous example of 
the fixed points. 

t I[ mndition (3.21) is violaled for one angle there are only ZN-' - 1 further non-equivalent b e d  poinu, 
ClC. 

- 
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3.3. Attractors and repeUers on irolated strange tori 

’lb obtain a more comprehensive picture of the motion on isolated strange tori it is 
useful to complement the symmetry considerations and the linear stability analysis of 
the foregoing section with numerical investigations. We are especially interested in 
finding all attractors on the torus, both for the torus of the ‘perturbing system’ (3.14) 
and for the corresponding tori at finite values of q. In the latter case we concentrate 
on the region of relatively large perturbations (q 2 1) or strong coupling (H,, small), 
ie. on invariant tori where the flow contains fixed points, since these have not yet 
been considered elsewhere (cf section 1). 

Point attractors are found by solving the fixed point equations & I*.= 0 and 
performing a h e a r  stability analysis of the motion near all fixed points (cf section 
3.2). In order to find all non-point attractors we used the following procedure: 
Near each of the fixed points on the torus which are not point attractors 2 N  initial 
conditions were selected, painvise displaced parallel to the N (perpendicular) axis on 
either side of each such fixed point, and the subsequent motion was tracked. The 
idea behind this procedure is to explore the unstable manifold(s) of all unstable fixed 
points since the stable manifolds of attractors do generically intersect the unstable 
manifolds of fixed points (this is true for point attractors and conjectured for others). 
Thus, exploring the unstable manifolds of all (unstable) fixed points should reveal all 
attractors. We used the method for studying the flow on two different isolated strange 
%tori, namely on the strange ‘Rossler torus’ (cf section 3.1) on the one hand and on 
the strange Zorenz t o m ’  on the other (the latter is related to the Lorenz system 181 
in the same way as is the ‘Rossler torus’ to Rossler’s system [13]). It turned out that 
whenever an attractor was found it also attracted at least one of the trajectories in 
the sample thus defined. In order to find the corresponding repellers of the flow-i.e. 
the attractors of the time-reversed flow-it suffices to apply the transformation (3.27) 
to these attractors. 

Let us briefly summarize the results of our numerical analysis [6] for the ‘Rossler 
torus’ (using the control parameters (3.16) taken by Rossler in [13]). As we have 
seen in section 3.1 the Lyapunov exponents depend only weakly on the scaling for 
a 2 100, and the same is true for the eigenvalues of the linearized motion near fixed 
points. Therefore, the value CY = 100 is used throughout. The numerical value of 
the unpertuhed frequencies w,, is of similar insignificance (and in the limiting case 
7 = 03 or in the ‘perturbing system’, respectively, it does not matter at all). We 
inserted wo = (us,ui,l) where ug = (1/5 - 1)/2 is the golden mean. Then the 
torus is a KAM torus in the l i t i n g  case q = 0. Still, for not too small values of 
q-~~pecially in the range where fixed points exist-one finds qualitatively the same 
behaviour for any other choice of the frequencies ww 

For these parameters we find three types of attractors on the strange ‘Rossler 
torus’: 

(i) For very large q-values there is a ‘Rossler-lie’ attractor near the origin, centred 
around an unstable fixed point (cf section 3.1 and figure 1). Near 7 = 1 one finds 
a simple limit cycle in its place which goes through a sequence of period doublmgs 
when q is increased, cf figure 2 The attractor turns chaotic near 7 = 170. Periodic 
windows (e.g. of period three) are found at higher q-values. This interpretation of 
the transformation of the attractor with increasing q is confirmed by the fact that 
Crutchfield et a1 [19] have shown that by vatying control parameter c in Rossler’s 
system (3.15) one proceeds Via a perioddoubling sequence from a simple limit cycle 
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to Rdssler's strange attractor. 
(ii) The positions of the fixed points may be calculated analytically by solving a 

quadratic equation for sin@,,l. Therefore, one finds two sets of fied points, each 
containing Z3 = 8 fixed points, cf section 3.2. The eigenvalues of the fixed points are 
found by solviing the cubic characteristic equation related to the 3 x 3 matrix in (3.24). 
As long as the fixed points are real-valued (i.e. for q 2 1) each set of fixed points 
contains a point attractor. Note that real-valued futed points exist only if a is not too 
small (at Q = CO, e.g., the value of the scaling parameter must exceed a = 28.47 or 
Q = 0.04, respectively, for the two sets of fixed points). 

(iu) For rl 2 1.6 one has, in addition, a limit cycle which attracts most trajectories 
out of the sample we used in our search for the attractors. The projection of this 
limit cycle onto the ('ZJl,'ZJz)-plane is centred around CJ, = Q2 = T and 'ZJ3(i) 
increases monotonically in steps of width T ,  varying with the same period as do @,(t) 
and Qz(t) .  Therefore one tinds a closed cuwe in the coordinates (@l,@z,sin@3), 
cf figure 3. It is easy to understand this behaviour qualitatively by expanding the 
equations of motion around sin cPi= l ,2  = ?r. In a certain sense this is typical 'Rossler 
behaviour't. Therefore, we refer to it here as the 'generic' limit cycle. Below 17 = 1.6 
period doubling sets in and the attractor turns chaotic-cf figure &before it vanishes 
near Q = 1.53. 
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Flgurr 2 The limit cycle near the origin of lhe 'Rkler  toms' bqrond the second 
period-doubling transition; q = 160. 

t Rijssler characterizes lhe principle underlying his system (3.15)-and others generating 'spiol-type' 
chaos-as followr 'combining a two-variable osdllator (in his case z and y) with a witching-lype 
subsystem (I) in such a way that the latter is king switched by the first while the Row of the ht is 
dependent on the witching slate of the latter' [13]. 
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@,in r10" 

Figure 3. me 'generic' Limit cycle on lhe 'R6ssler IONS' centred around (01, 0 2 )  = 
(r, ?r) in the (01,02)-plane; 0 3  is monotonically increasing. 1) = m. 
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Figure 4 The 'generic' periodic attraclor on the 'Ronler Lorus' has tumed chaotic; 
= 1.536. 

Notwithstanding some differences in detail, the overall picture of the motion on 
the isolated strange 'Lorenz-torus'is very similar to this behaviour on the isolated 
strange 'R&sler torus' [6] (cf the footnote in section 5). 
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4. Non-isolated non-regular Hamiltonian tori 

AI we have seen in section 1 non-regular tori need not be isolated in phase space. In 
the following section we demonstrate that the attractors of (quasi-)periodically driven 
systems may occur on non-isolated non-regular tori forming invariant planar areas 
in phase space. In section 4.2 we show that the finite dimension n of the invariant 
manifold M ,  in action space formed by the non-regular tori leads to important 
consequences for the flow on the tori: the number of vanishing Lyapunov exponents 
is constrained to be > n, and periodic motion may be impossible if n > 2 
4.1. Attractors qf (quari-)pm'odically driven TsIetns on non-regular ~ori 
Since the matrix t l F / a I ,  in the equations of motion (1.5) has rank m = N --n there 
always exists a linear canonical vansformation such that the transformed equations 
of motion have a same simple structure: n of these equations are trivially integrable, 
and their solutions depend linearly on time. Inserting these solutions into the other 
equations we are left With m = N - n non-trivial equations explicitly depending on 
time. In general an appropriate rotation of the coordinate axis is necessary in order 
to reduce the equations of motion (1.5) to this simple form and the transformed 
coordinates need not be angles (cf the detailed discussion in [6]). Here we restrict 
ourselves to the simplest case where the system of equations of motion is separated 
into n trivial equations and m = N - n others Without further transformation. As an 
example let us apply the procedure of section 3.1 to the periodically driven Duffing 
oscillator 
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5 t pk + kHW2z t (cz3 = alms(wl t )  (4.1) 

where I C ,  = 1 or IC, = 0 (in the latter case one has a purely anharmonic oscillator). 
Substituting 2, k l / w  one arrives at a non-autonomous system of 
two lirst-order differential equations. Proceeding as outlined in section 3.1, and 
subsequently extending the phase space in order to eliminate the explicit time 
dependence by substituting B3 = w l t ,  one gets the following equations of motion 

x and z2 

6, - w1 
3 - -  17 

for action values I ,  on the straight line MI = {I* I I.,; = Io,i, i = 1,2} (therefore, 
R = 1). Thus, the procedure yields invariant 3-ton forming a four-dimensional 
invariant manifold in the sixdimensional phase space. 

For sufficiently large values of the scaling parameter a: we find the well known 
attractors of the periodically driven Duffing oscillator [14, U] near al = a2 = 0 if 
w",, = = 0 and 17 = 1 (note that the scaling increases the nonlinearity but 
decreases the driving force). These attractors are periodic or chaotic ones, depending 
on the value of the driving amplitude al.  Figure 5 shows such a chaotic attractor 
(the time step chosen is not small relative to the average time of revolution on the 
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I ,  
- 6  - L  - 2  0 2 L 6 

X 

F@m 5. A strange attractor of the periodically driven Duffing axillator found near 
0 1  = *z = 0 on a 'Duffing 3-torus'. Lyapunov exponents: A1 = 0.091, A? = 0, 
XJ = -0.297. Parameters: fl = 0.2, kx = 1, n = 1, w = w1 = 1. a1 = 55, I) = 1 and 
P = lO'O. Xme step At = 0.5, TlAl  = 2OMo paints displayed. 

attractor). For the Lyapunov exponents given in the legend one has X,+X,+X, = - p  
as required for a system with a constant value of the Jacobian (cf 120, ch 7.11). 

Equations (4.2) describe the motion of an electron-which has the appropriate 
momentum-with two spatial degrees of freedom (z and y) in a periodically time- 
dependent field. However, if one identifies 

(4.3) 
z 

@p3 2 ~ -  and w, 3 w",~(I*) 
20 

d the last paragraph of section 2-these equations describe the motion of an electron 
with three degrees of freedom in a stationary field. In this case the action variable Z3 
has a direct physical interpretation, namely I ,  .i = constant (since A, = 0). Thus 
we see that even in the simplest case where the equations of motion are separated 
into trivial and non-trivial ones from the outset (without further transformation) they 
may be autonomous ones, rather than being only formally autonomous as our original 
equation (4.2). 

As another example we apply our standard procedure to quasiperiodically driven 
Duffing oscillators, i.e. we replace the driving force in (4.1) by a sum ai cos(wit) 
containing two or more (generically) incommensurate driving frequencies wi. We thus 
arrive at a system of equations of motion which is a trivial extension of the system 
(4.2). Clearly, periodic motion, and thus the Occurrence of periodic attractors, is 
excluded kn the generic case of incommensurate driving frequencies. As the number 
m of non-trivial equations is fixed (m = 2 in the Duffing case) the equations of 
motion describe the motion of an electron with two spatial degrees of freedom in 
quasiperiodically time-dependent electromagnetic fields. However, if we insert (4.3) 
and let n = 2, we find that the equations also characterize the motion of an electron 
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with three spatial degrees of freedom in periodical& timedependent electromagnetic 
fields. 'Iteating 'time' and energy again as canonical variables in an enlarged phase 
space the trajectories of the electron are situated on invariant 4-ton forming a six- 
dimensional invariant plane in the eight-dimensional phase space. We study a purely 
anharmonic Duffing oscillator, Le. k, = 0, and set a = 1 (no scaling). Thus we 
do not expect to find the attractors of the original quasiperiodically driven Dufling 
oscillator oscillator near a1 = D2 = 0 for w " , ~  = = 0 and q = 1. At small 
driving amplitudes ai=1,2 we find there aperiodic attractors with a Lyapunov spectrum 
of the form (O,O,-, -). The motion on one of these regular aperiodic attractors is 
shown in figures 6 and 7. Whereas the latter contains a Wincar6 plot for a k e d  
value of Q4 the former displays a projection into the (@, , a2) plane (the time step 
chosen in this case is again not small relative to the average time of revolution on 
the attractor). One should note that the details of this picture change markedly if 
the time step is only slightly varied whereas the general impression of regularity does 
not. Reducing as it does the dimension by one, the fact that the PoincarB section 
of the attractor yields a simple curve proves that the attractor is really a-already 
somewhat distorted-2-torus in the four-dimensional space of the angles. If one 
enhances the driving the torus 'breaks up', as is clear in figure 8 (a projection into 
the (Q1,G2) plane gives a more or less uniform distribution of points which is slightly 
more extended than the one in figure 6). 
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Figure 6 Projection of a =gular non-periodic attractor on a 'Duffing 440111s' into 
the (+1,@z)-plane, Lyapunov-exponents X I  = Xz = 0,  X) = -0.04, XI = -0.06. 
Parameters: p = 0.1, kX = 0, (i = 1, w = 1 w1 = rg, y = ni, 01 = 0.1, a2 = 0.2 
and r) = 01 = 1. Time slep At = 0.5. T / A t  = SOW0 points displayed, 

4.2. Consequences of the fvite dimension of the invariant manifold 

In Hamiltonian systems of the form (1.4) non-regular N-tori form invariant areas 
with dimensions 
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F(gum 7. Poincad section of the atlractoc shown in ligure 6. me value of 
(+ time step At = 2?r/wz). 

is 6xed 

D , = N + n  (4.4) 

ranging from N + 1 up to 2N - 1. And yet, these tori have clearly measure zero 
in the 2N-dimensional phase space. This is in contrast to KAM tori which fill a part 
of finite measure in the phase space of near-integable Hamiltonian systems having 
N degrees of freedom. It is interesting to compare the dimension D, (4.4) m the 
dimension D ,  of a manifold of KAM tori having the Same normalized frequency 
vector fi = fl/ I fl I. Since there are N free angle variables on these ton which in 
tum exist in an energy interval one has 

D,, = N t 1. (44.5) 

Therefore, non-regular tori can form barrierst in Hamiltonian systems of the form 
(1.4) with any number of degrees of freedom whereas KAM ton cannot form barriers 
in near-integrable systems with more than hvo degrees of freedom. 

Important conclusions can be drawn from the fact that n is the number of relevant 
frequencies whereas m = N - m is the number of relevant differential equations: n 
of the Lyapunov exponents characterizing the motion vanish whereas the m remaining 
ones need not. Chaotic attractors may thus exist if m > 1. This excludes barrier ton 
in Hamiltonian systems of the form (1.4). The dimension of the attractors on bamer 
tori may still be fractal, ie. one may find strange non-chaoric attractors on barrier tori 
if N 2 3. Such attractors have been found among the solutions of one first-order 
differential equation containing quasipenodic driving terms (n = 2) (161. 

t An imaliant (ZN - 1)dimensional manifold is an (insurmountable) barrier for the flow in the 2 N -  
dimensional phase space if it mntains the surface of a 2Ndimensional manifold. Then lhe flow is 
w e w h e r e  tangential to that surface, and thus Irajstories cannot cmss iL Other invariant (2N - 1)- 
dimensional manifolds are aim banien @ut not insurmountable ones). 
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’ O 1  

Figure 8. ltansition U, a chaotic attractor on a ‘Duffing +torus’: PoincarE section of the 
attractor shown in the two preceding Bgures but now a1 anhanced driving (all parameters 
unchanged a c e p i  for 01 = 0.1625). Again, the value of @ d  is ked. Non-wnishing 
Lyapunov exponents: A, = 0.01, A4 = -0.09. According to the well known Kaplan- 
Yorke conjecture 1221 this implies that the information dimension of the attractor is 
dr c 3.1, i.e. fractal. 

Penodic motion becomes impossible if n 2 2 and the frequencies w ~ = ~ , . . , , ~  
constituting the right-hand sides of the n trivial equations are incommensurate. Thus, 
periodic attractors, i.e. limit cycles, cannot exist on these tori if this commensurability 
condition is not fulfilled. Of course the attractors may still be regular ones, cf the 
example of the ‘Duffing 4-tori‘ in section 4.1 (especially figures 6 and 7). 

5. Conclusions 

We have investigated the motion on Hamiltonian tori which are not of KAM type. The 
flow on these invariant tori is-generically-dissipative and non-integrable. Therefore, 
attracton can occur on such non-regular tori which may be strange ones in systems 
with three or more degrees of freedom. On the other hand, non-regular tori may 
be reduced to KAM ton if the perturbation is small enough (the measure of the set 
of points on the q-axis where such a reduction is possible is €mite and tends to 1 
with q -+ 0). Thus, we find a new ‘chaos scenario’: KAM tori which transform into 
non-regular ones rather than breaking up when the perturbation becomes strong. 

Non-regular tori may be isolated in phase space but need not be. They form 
invariant areas with dimensions ranging from N up to 2N - 1. Thus, barriers 
consisting of such invariant tori may occur in the phase space of Hamiltonian systems 
with any number N of degrees of freedom whereas KAM tori cannot form barriers 
for N > 2 The motion on such non-regular barrier tori is always regular, though. 
Still, one may find strange non-chaotic attractors there. On non-isolated ones which 
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are not part of a barrier chaotic (strange) attractors may occur. A simple procedure 
has been used which allows to specify Hamiltonian systems with non-regular tori 
mntaining well known (strange) attractors-and structurally identical repellers-such 
as the Rdssler attractor or the attractors of the driven Duffing adlator .  Attractors 
of autonomous dissipative systems are found on isolated non-regular tori whereas 
those of (quasi-)periodically driven systems occur on non-isolated tori. Furthermore, 
limit cycles have been observed which transform via period-doubling sequences into 
chaotic attractors when the perturbation strength is variedt. On non-regular tori 
related to quasiperiodically forced systems regular but aperiodic attractors replace 
the limit cycles. Fured points, and hence point attractors, (generically) only occur 
on isolated non-regular tori. Although we did not give an example it should be 
mentioned that 'transient repellers' [22] may exist on non-regular tori as well. 

In this paper we present a model of a Hamiltonian system containing such non- 
regular tori, isolated ones as well as non-isolated ones: an electron moving in certain 
electromagnetic fields which are periodic in space. Even if these fields are stationary 
the motion of the electron on a non-regular torus may correspond to that of a 
periodical& driven system, eg. the Duffing oscillator (cf section 4.1). It should be 
noted, though, that in our model non-isolated tori form always planar invariant 
areas in phase space whereas in general such invariant areas may be non-planar. 
hrthermore, we did not attempt to check whether the space-periodic charge and 
current densities required for building up the electromagnetic fields can be easily 
generated in an experiment. 

The study of the motion on non-isolated non-regular tori has been restricted to 
the region near the origin (with respect to the 'non-trivial' components) whereas in 
the case of isolated tori we have concentrated on the investigation of the motion in 
systems with moderate and large perturbations (0 2 1). This is justified by the fact 
that the flow on tori with (at least) one monotonically advancing angle variable has 
already been considered elsewhere [9-121 by exploiting the then possible reduction in 
the continuous dynamics to the study of discrete maps (cf section 1). 
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