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Abstract. KaM tori are well known to be that (finitel) part of phase space in which the
motjon of a weakly perturbed classical Hamiltonian system remains integrable. Moreover,
they are barriers in the phase space of systems with two degrees of freedom. We show
that certain Hamiltonian systems contain invariant non-regular tori with compressible flow.
Using as an example an electron moving in electromagnetic fields which are periodic
in space we demonstrate: (i) that strange attractors (and repellers) of well known
autonomeus or (quasi-)periodically time-driven systems may occur on such strange fori;
(i) that one may find barriers consisting of non-regular Hamiltonian tori in systems with
any number of degrees of freedom (the flow on such bamiers is non-chaotic, though);
and (fii) that certain ®am tori transform into non-regular tori—rather than breaking
up—when the perturbation becomes strong.

1. Introduction

In near-integrable Hamiltonjan systems, integrable motion survives on so-called KAM
tori [1-3]. Transforming to appropriate action-angle variables the equations of motion
on a KAM torus situated at I = I, in action space can be cast into the form

I=0 and &=0() aI=I, (1.1)

The motion on a KAM torus is universal in the sense that it depends on the frequency
vector 2(I,) only and not on any detail of the nearly integrable system. In the
neighbourhood of such a KAM torus the &®-dependent term of the Hamiltonian
{provided that the latter depends analytically on I and ) must be at least quadratic
in I— Iy
N
H=Hy(D+e > (I, =Io )y (I, @), = Iy,). 1.2)

v,u=l

Here ¢ is a small parameter indicating the weak non-integrability of the system.
Let us consider Hamiltonians which are only finear in I — I,;:

H = Hy(I) + n(I- 1) - G(I, &). 3)
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262 A von Kempis and H Lustfeld

The parameter n need not be small. Clearly an invariant torus exists at I = Iy},
More general analytic Hamiltonians containing invariant tori which need not be KaM
tori can be found by replacing the term I — I in (1.3) with a vector field F:

H = Hy(I) + nF(I)- G(L, &)
F(I})=0 forL,e M, dmM,=ngN-1 (1.4)

where M, is an n-dimensional manifold in action space. Hamiltonians of the form
(1.3) are contained in (1.4) for » = 0. For n > 0 one finds an invariant torus for every
action value I, on the manifold M, . Such tori are therefore not isolated in phase
space: their union forms an invariant manifold with dimension D, = N+n 2N -1
(note that for D, = 2N —1 these tori form a barrier in phase space, cf section 4.2).
The equations of motion on such a torus situated at I = I, € M,, read

oF _ 8H,
'aT*G(I‘,, @) Where WU = —3-'1_—.

& =wy(L,)+1 (L.5)
For small n the probability is finite that these tori will again be KaM tori—which
means that, applying KAM perturbation theory, one may find a time-independent
canonical transformation of the angles alone removing the term of the Hamiltonian
(1.4) which is linear in I — I, [4,5] (two simple explicit examples are given [6]; cf
also [7]). Even for small n the procedure does not converge in the neighbourhood
of resonances which means that (generically} it will not converge in any n-interval.
The points on the n-axis where such a transformation exists form a set of finite
measure, though, and the latter tends to 1 with n — 0. For large # the strength
of the perturbation will generically destroy all KAM tori, and the same is true in the
strong-coupling limit Hy, — 0 (= wy(Z,) — 0). We call these tori which are not of
the KAM type non-regular tori. In contrast to the regular tori in integrable and nearly
integrable systems (the latter are the KAM tori) they clearly cannot be classified by
just one frequency vector 2.

Whereas the equations of motion (1.1) on KAM tori are trivially integrabie the
motion on these non-regular tori is of a different type, as may already have been
guessed from the equations of motion (1.5). These show that the motion on the
invariant tori of systems of the type (1.4) are usually dissipative because the divergence
rate of the flow on these tori, ie.

. 8F
Vg -&=1nV,- (EG(L, @)) (1.6)

needs not vanish} (note that the vector function G(I,®} is only required to be 2x-
periodic in the angles @). Therefore, attractors may occur in the flow on non-regular

1 A manifold in phase space is called an #varignt manifold if the direction of the flow (j.e. of the phase
space velocity) is everywhere tangential to it.

1 Since the ensemble density pe in the phase-space of the variables z is subject to the continuity equation
pu+ pe V& = 0one has Vg -# = V, /V,, where Vz = 1/pp is the specific phase-space volume. Thus,
the local divergence rate equals the relative change of the specific phase space volume per unit time. In
Hamiltonian systems = = (I, ®), and thus Vs = Vg-$+ V- f = Vg (VI H)+V{(-VsH) =0
which implies p, = 0 (Liouville’s law). Analogously, on an invariant N -torus situated at I = I, in
action space one finds that Vg -& |1, = Vi / Vs where Vg = 1/pg is the N dimensional specific torus
volume {whereas dim V; = 2N in general).
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tori. This is no contradiction to Liouville’s theorem concerning the conservation of
the 2N-dimensional phase-space volume since it vanishes identically on a given N-
torus, and the same holds for all other Poincaré invariants. Thus, these conservation
laws do nor forbid dissipative or antidissipative motion on invariant tori. On KAM
tori the system still feels’ the presence of the N commuting conserved quantities of
the unperturbed system, whereas on non-regular tori the situation may be compared
with a system having N non-commuting conserved quantities of the motion. In such
systems the flow is restricted to an N-dimensional manifold but on this manifold
chaotic motion is not usually excluded. Dissipative motion on invariant tori must
naturally be compensated for by antidissipative motion in their neighbourhood (see
later). Furthermore, the flow on tori cannot be dissipative everywhere since the mean
local divergence rate vanishes due to the 2x-periodicity of the equations of motion:

j{v, CB(L,,8)d¥ D = 0. W

This is in contrast to conventional dissipative systems where the local divergence rate
is usually negative-definite. For instance, in the well known systems of Lorenz [8] or
Duffing (cf section 4.1) the value of the divergence rate V- # is uniform in phase
space.

Some aspects of the motion on tori have been discussed in recent studies in the
context of dissipative systems. Grebogi and Battelino [9-11] demonstrated numerically
that quasiperiodic motion does generically persist on invariant N-tori (¥ = 3 or
4) for finite perturbations while Baesens et a/ [12] concentrated on the study of
resonances and global bifurcations in systems of three weakly coupled oscillators. In
these studies the continuous dynamics is always reduced to discrete maps by analysing
a Poincaré or return map of the motion on the torus. This is only possible if at Jeast
one integer linear combination of the angle variables advances monotonically in time.
As we will see, this excludes Hamiltonian systems with isolated invariant tori (which
are implicitly considered in these studies) in the range of large perturbation (n 2 1)
or strong coupling (H, — 0) which we will investigate later—simply because then
there are (generically) no angles, or integer linear combinations of angles, advancing
monotonically for indefinite time. In the long-time limit the motion is thus confined to
relatively small parts of the torus where the local divergence rate is negative-definite
and—after a transient phase—the trajectories converge towards attractors which (as
we will show) may also be strange onesf. Since the divergence rate vanishes when
averaged over the whole torus it is no surprise to find (strange) attractors also in
the study of the time-reversed flow. These attractors are repellers of the non-time-
reversed flow. We call non-regular tori containing strange attractors (or repellers)
strange tori for short.

In this study we always restrict our attention to the motion on non-regular tori.
As the flow in phase space as a whole cannot be compressible, dissipative motion
on such tori has naturally to be compensated for by antidissipative motion in their
neighbourhood, ie. in action space, and vice versa. For sufficiently large perturbation
strength—» > 1—nearly all trajectories on these tori tend towards attractors in the
long-time limit. Therefore, for nearly all initial conditions non-regular tori are strongly
repulsive in action space if 7 is sufficiently large. Trajectories starting near non-regular

t In the previously mentioned paper [I2Z] Baesens & o describe another form of chaotic motion on
invariant tori, namely chaotic variations of the winding numbers, which they call ‘toroidal chaos'’,
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tori can approach such a torus only during the transient phase, provided the initial
conditions in the angles are situated near a repeller, or if the initial conditions in the
angles are situated on a repeller (then exponentiaily fast for indefinite time). Some
explicit examples have been worked out in [6] (see also [7]).

The paper is organized as follows. In section 2 we demonstrate that Hamiltonians
of the form (1.3) and (1.4} do occur in physics, namely for a single charged particle
(e.g. an electron) moving in certain electromagnetic fields which are periodic in space.
Section 3 is devoted to the study of the flow on isolated strange tori containing well
known strange attractors of autonomous systems, such as those studied by Lorenz [8]
or Rossler [13]. Non-isolated non-regular Hamiltonian tori are inspected in section
4. We find that: (i) well known attractors of periodically or quasiperiodically driven
systems occur on such tori, e.g. those found in Duffing’s oscillator system [14, 15;
(ii) the flow on non-isolated N-tori forming a barrier cannot be chaotic (but may
contain strange non-chaotic attractors [16] if NV > 3); and (iii} periodic motion may
be impossible if N > 3. Conclusions are given in section 5.

2. An eéleetron moving on non-regular Hamiltonian tori

Before studying the properties of the fiow on non-regular Hamiltonian tori in more
detail let us show that such tori, both isolated and non-isolated ones, may indeed occur
in physical systems, namely for an ¢lectron moving in certain stationary or (quasi-)
periodically time-dependent electromagnetic fields which are periodic in space.

The Hamiltonian of a non-relativistic ‘classical electron’ (without spin) moving in
an electromagnetic field reads (in MKS units)

1

2m,

H = —(P—eA(r,1))* + ed(r,t) eRY)
where A and ¢ are the magnetic vector potential and the electric potential,
respectively, e = — e, is the charge of the electron, and P = m 7% -+ eA(r,f) is its
canonical momentum. If one can find a constant F, such that—for some gauge—the
electric potential fulfils the condition

_Pu'A(T,'t)_ [

2
Br,ty = D =AY @2)
the Hamiltonian (2.1) takes the form
p? e
H= am,  m. (P — By)- A(r,1). (2.3)

For vector potentials 4 which are periodic in space, ie. which fulfil
A(r + 7)) = A(r) i=1,2,3 2.4)

for three linearly independent vectors r;_; , ;, the Hamiltonian (2.3) may be written
either in the form (1.3) or in the form (1.4). Because of the periodicity properties
of the electromagnetic potentialsf one can always find a linear transformation to

+ These imply a corresponding space periodicity of the electromagnetic fields and (via the inhomogeneous
Maxwell equations) of the charge and current densities producing these fields.



Chaotic motion on Hamiltonian tori 265

action-angle coordinates. For magnetic vector potentials whose space periodicity is
characterized by cubic basis cells, ie.

Tl = (J:U, 0, 0) 1'2 = (0, yo,o) 1'3 = (0, 0, 20) (2.5)
one has, e.g.,
T Yy =z
=27 —,=,— and I=——-:n zr YoFys 2P, 2.6
(-'Bo Yo 20) (zoFys W o) (2.6)

and the Hamiltonian (2.3) is transformed to

3
H=3 [elI)dl +n(I - )- 68, 1)
i=1

where
m, \a? 2’ 22 e 7 “«'o "Wz Zu

2.7
The Hamiltonian (2.7) is of the type (1.3) if A has three linearly independent
components whereas it is of the type (1.4) if A has m < 3 linearly independent
components, ie.
mg2
A=Y GA;  owith Ai(rtrinpe) = 4;(7)  j<m <3 (2.8)

There is an invariant torus for action vectors satisfying the m conditions

Gnlog+ &l o+ 65303 =¢;-Jy  where & = (% yﬁu Sﬁ) i< m <3

(2.9)
For m = 1 this condition specifies a plane M, that divides the three-dimensional
action space into two parts which cannot be joined by trajectories. Thus, the invariant
tori with actions I, € M, form a barrier in phase space. For m = 2 the two linearly
independent conditions specify a straight line M. Therefore, the invariant tori with
actions I, € M, form a four-dimensional planar area in the six-dimensional phase
space.

It should be emphasized that the Hamiltonian (2.1} is gaupe-invariant, ie. a
canonical transformation exists which leaves it form invariant with respect to a gauge-
transformation of the electromagnetic potentials [6]. Clearly, this is not the case for
the Hamiltonians (2.3) and (2.7) since the condition (2.2) is not gauge-invariant. This
does not mean that the presence of non-regular tori depends on the choice of the
gauge. Rather, it depends on the choice of the electric (or: electromagnetic) field(s).

For later use (namely in section 4.1) we note that non-regular Hamiltonian
tori may occur in the non-relativistic motion of an electron in time-dependent
fields as well, and also when the motion is restricted to only one or two spatial
degrees of freedom. With regard to this latter case let, eg, A, = 0. Then
$, = (Zw/zu)z = wM(I) = constant for I, € M,_,, which implies 2 = 0
whereas in the general case, ie. if the electric potential does not fulfi] the condition
(2.2), or beyond the invariant tori considered here, # = 0 implies A, = 0 and
0A,[/0z=08A,/0z=0.
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3. Isolated non-regular Hamiltonian tori

We proceed to show that, for any piven attractor of a dynamical system which can
be described by autonomous ordinary differential equations, one can easily find a
Hamiltonian system containing an isolated invariant non-regular torus where this
attractor occurs, provided the extension of the attractor is finite. Thus, if the
dissipative system—written in the form of first-order differential equations—consists
of no more than three equations one may specify electromagnetic fields such that a
non-relativistic electron with appropriate momentum moves on a non-regular torus
containing any such attractor. As an example we consider a torus containing the
strange attractor of Rossler’s system [13]. In section 3.2 we investigate certain
symmetry properties of the flow on these somewhat special non-regular tori related
to fixed points or time-reversal, respectively. In section 3.3 we explain the method
used to find all attractors on isolated non-regular tori and give a short account of
our results concerning the strange ‘Réssler torus’ which contains several, and in many
cases coexisting, attractors, namely two point attractors and two periodic attractors
(limit cycles) where the latter transform into strange attractors via sequences of
period-doublings when # is decreased or, in the case of Rissler’s strange attractor,
increased. In addition, every attractor is connected to a structurally identical repeller
by a one-to-one transformation.

3.1. Attractors of autonomous systems on non-regular tori

The procedure is straightforward. Take any (nonlinear) autonomous system of
ordinary differential equations with M control parameters. If necessary transform
it into a system of first order # = f(=;p;,...,pas) OF, in scalar notation,

#; = fi(Tj=1,.,N> Pr=t,,m) i=1...,N. 31
If it contains an attractor of finite size in the N-dimensional phase space of the

variables = transform (rescale and/or shift) these variables—if necessary—such that
the attractor is situated near the origin. Then replace

- ,o@
fiz;ip) = filzsp) = f; (asinZ5p, ) (32)
where o is a new parameter. In this way one creates the modified system
. x ¥
#; = f; (asin = p,) - (3.3)
It is clear that due to

. .
lim asin—== (3.4)
zfa—l [

the modified system (3.3) tends to the original one (3.1) for z/a — 0. Since the
right-hand side of (3.3) is 2»-periodic in the new variables ® = z /a, substitution of
variables leads to

, 1 X
@, = —fi(asin®,;p,). (3.5)
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Let us identify the right-hand side of this system with the vector field G(&):
1 . .
G(@)EEf(asm(bl,...,asm‘DN;pl,...,pM). (3-6)

This vector field is 27-periodic in the variables ® (as required). If we insert it into
the equations of motion (1.5) for n = 0 we get the system

'i’=wU(IU)+g—f(asind?l,...,asinbe;p],...,pM) G.7)

on the torus situated at J = I,. Denoting by a prime the derivative with respect to
a scaled time 7 = nt we arrive at

3 = wy(dp)

1 . .
7 +;_f(asmd)l,,..,a31n(I>N;p1,...,pM). 3.8)

Starting from a Hamiltonian of the form

Hu(I )

H= +(I-1L) -G, &) (3.9)

rather than from one of the form (1.3) and proceeding as before one arrives at an
equation of motion of the same form as (3.8) but with the derivative taken with
respect to the unscaled time variable ¢:

&= wUS?IU) +—flasin®,,...,asin@pyipy-e 5 Par) (3.10)
In the limit
@:-Z--m and - (3.11)

the system (3.8) tends to =’ = f(x;py,...,Pp)» L€ toO the original system but with
respect {o scaled time, and the system (3.10) tends to the original system (3.1). In this
limit an attractor of the original system situated near the origin will therefore also
show up in the earlier systems of equations of motion (3.8) or (3.10), respectivelyt,
in the neighbourhood of the origin and its equivalent locations, i.e. near

& =2l tezZV. (3.12)

Note that the limiting case n = oo can be realized (alternatively) by the parameter
values

wy(ly) =0 and - p=1 (3.13)

t There is a subtlety in the limit (3.11) on which we would like to comment: keeping the parameters
{pr} fixed the Lyapunov exponents converge to those of the criginal attractor in the limit (3.11) if the
attractor is structurally stable. If it is not we can find parameters {p,} depending on o and n such that
the Lyapunov exponents and the {pr} converge to those of the original ateracior in this limit.
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ie. by starting with the Hamiltonian
H=(I-1I;) G(&) (3.14)

to which we will refer below as the ‘perturbing system’ of the Hamiltonian (1.3).

Clearly all finite-sized attractors occurring in autonomous systems of differential
equations also occur on isolated invariant tori of Hamiltonian systems which may be
specified by the procedure described in this section. Yet, this statement js rigorous
only in the limit o — co. For finite values of the scaling parameter « the behaviour
near the origin—and its equivalent locations—does not change much if « is large,
cf the following example. We apply the previously described procedure to Rossler’s
system [13]

T=-y—z
g=z+ay (3.15)
2=b+ z2(x—¢)

where a, b, ¢ are the control parameters. Rassler [13] used
a=02 b=02 e=457. (3.16)

If we identify system (3.15) with system (3.1) and insert it into equation (3.8) we find
the following equations of motion on the torus situated at I = I;:

@i:%—sin@z—sin%

@I_wo,z . .

2_T+5111<I>1+asm'11>2 3.17)
P93 b in®, - <

&5 = p +a+asm<1>3{sm¢1 a}.

As discussed in section 2 it is easy fo specify electromagnetic potentials such that
the motion of a non-relativistic electron with appropriate momentum proceeds on an
invariant 3-torus with given equations of motion. In the present case the vector
potential may easily be found by comparing the foregoing equations of motion
with the equations of motion on the non-regular torus of Hamiltonian (2.7) and
resubstituting for the angles from (2.6). The necessary electric potential is defined
by (2.2). Beyond the ‘Rossler torus’ the frequency wy(P) depends linearly on the
canonical momentum, cf section 2.

For sufficiently large values of « one expects to find an attractor near the origin
which should be very similar to the strange attractor of Rdssler’s system (3.15) if
wy(Iy) = 0 and »n = 1, which implies (as initial conditions} m.# = —eA(r) or
(alternatively) in the limit » — oo. Figure 1 shows this attractor—centred around an
unstable fixed point—for o = 100 and Réssler’s control parameter values (3.16). The
attractors are so similar that their plots look the same. For not too large o they can
be distinguished, however, by computing their one-dimensional Lyapunov exponents
with the algorithm of Wolf et o/ [17]. The definition of the Lyapunov exponents
employed here is the more usual one—exponents relative to the base e—rather than
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19

06

@?m,qo'l -2 -1 ¢ 2 1 2 3
G imix10

Figure 1. The ‘Rossler-like’ attractor on the ‘Rissler torus’, centred around an unstable
fixed point; » = co and o = 100 (this value of « is used throughout).

the one used in [17] (exponents relative to the base 2). For the ‘Rossler-like’ attractor
displayed in figure 1 one finds

A = 0.06 Ay =0 Ay = =539 (3.18)
while the original Rdssler attractor is characterized by

A =007 A, =10 Ay = —5.39 3.19)
which indicates a slightly more chaotic behaviourt.

3.2. Symmetry analysis of the flow

As discussed in the introduction, the motion far from the origin will greatly differ from
the one near the origin in Hamiltonian systems of the form (1.3) or (3.9), respectively,
since dissipative regions on tori have to be complemented by antidissipative ones.
Much about this behaviour can be Jearned by exploiting the symmetry property of the
sine function

sin ¢ = sin(7 — ). (3.20)

Let us look first at the fixed points of the equations of motion (3.8) or (3.10),
respectively, on strange tori. Assuming that at least one fixed point &, does exist—
and every fixed point of the original system (3.1) implies the existence of such a fixed
point in the limit & — oo {and n — co or, alternatively, wy(I,;) = 6 and n = 1)—the

t There is always a vanishing exponent related to the direction of the flow except for trajectories ending
on a fixed point [18].
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existence of 2V — 1 further and non-equivalent fixed points follows from this symmetry
relation if

B, ;£ in+in leZ foralli=1,...,N (3.21)
since then one has @, ; # = — @, ; for all anglesj. Using the notation
ofl=9, ol=r_g, (3.22)

any one of these 2V fixed points may be characterized by a string of N bits
['n.-l,..- ,ﬂN] via

glremd = (@l @Ay where ny_, v € {01}, (3.23)

Among them we denote by [0,0,0] the fixed point next to the origin. Each fixed
point [ny,...,n ] generates a lattice of equivalent fixed points with lattice constants
27 in every component.

Where fixed points of the motion on a strange torus exist one will naturally
perform a linear stability analysis of the motion near them. Since the right-hand side
of an equation of motion vanishes at a fixed point, expanding system (1.5) for n =0
around &, leads to

IG(I, ®)
% &
The eigenvalues of the matrix 8G /&, [;, characterize the flow near &, (if e.g.

all eigenvalues are negative the fixed point i$ an attractor). For vector fields G(&)
defined via (3.6) one has

8G; _ _8G;
3%,,  osmd,;

Therefore, any fixed point [n,,...,n ] has a conjugated partner [7y,...,Tiy] among
the other 2V — 1 ones, namely

@ |, = (B —8,)+- . (3.24)

cos P, .. (3.25)

T o (o @l - 30Ny = - gl (3.26)
with the opposite eigenvalues since cos ¢ = — cos(n — ).

Comparing more generally the equations of motion of a point @ to those of the
conjugated point

B=(r—-0,...,T1—® =78 (3.27)

we sce that @ = —&. Furthermore, for vector fields G(®) defined via a relation
of the form (3.6), the symmetry relation (3.20) of the sine function leads to
G(®) = G(®). Therefore, the equations of motion of a point & are fully equivalent
to the time-reversed equations of motion of the conjugated point &. Stated more
formally: if ®(t) solves the equations of motion then &(—1) = w — &(~t) is also
a solution, and vice versa (sibce @ = &). Any trajectory has thus a counterpart
under time-reversal which is simply shifted and reflected with respect to the original
one by the transformation (3.27). As a consequence all attractors also occur in the
time-reversed flow, yet transformed via (3.27). Every attractor of the motion forward
in time is thus matched by a repeller of the same type—cf the previous example of
the fixed points.

% If condition (3.21} is violated for one angle there are only 2*¥—! — I further non-equivalent fixed points,
etc.
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3.3. Aunractors and repellers on isolated strange tori

To obtain a more comprehensive picture of the motion on isolated strange tori it is
useful to complement the symmetry considerations and the linear stability analysis of
the foregoing section with numerical investigations. We are especially interested in
finding al attractors on the torus, both for the torus of the ‘perturbing system’ (3.14)
and for the corresponding tori at finite values of #. In the latter case we concentrate
on the region of relatively large perturbations (n 2> 1) or strong coupling (H, small),
ie. on invariant tori where the flow contains fixed points, since these have not yet
been considered elsewhere (cf section 1).

Point attractors are found by solving the fixed point equations & |z = 0 and
performing a linear stability analysis of the motion near all fixed points (cf section
3.2). In order to find all non-point attractors we used the following procedure:
Near each of the fixed points on the torus which are not point attractors 2N initial
conditions were selected, pairwise displaced paraliel to the N (perpendicular) axis on
either side of each such fixed point, and the subsequent motion was tracked. The
idea behind this procedure is to explore the unstable manifold(s} of all unstable fixed
points since the stable manifoids of attractors do generically intersect the unstable
manifolds of fixed points (this is true for point attractors and conjectured for others).
Thus, exploring the unstable manifolds of all (unstable) fixed points should reveal all
attractors. We used the method for studying the fiow on two different isolated strange
3-tori, namely on the strange ‘Rdéssler torus’ (cf section 3.1) on the one hand and on
the strange ‘Lorenz torus’ on the other (the latter is related to the Lorenz system [8]
in the same way as is the ‘Rossler torus’ to Réssler’s system [13]). It turned out that
whenever an attractor was found it also attracted at least one of the trajectories in
the sample thus defined. In order to find the corresponding repellers of the flow—i.e.
the attractors of the time-reversed flow—it suffices to apply the transformation (3.27)
to these attractors.

Let us briefly summarize the results of our numerical analysis [6] for the ‘Rdssler
torus’ (using the control parameters (3.16) taken by Rossler in [13]). As we have
seen in section 3.1 the Lyapunov exponents depend only weakly on the scaling for
a 2 100, and the same is true for the eigenvalues of the linearized motion near fixed
points. Therefore, the value o« = 100 is used throughout. The numerical value of
the unpertubed frequencies w, is of similar insignificance (and in the limiting case
7 = oo Or in the ‘perturbing system’, respectively, it does not matter at all). We
inserted wy = (ag,ag,l) where o, = (v/5 — 1}/2 is the golden mean. Then the
torus is a KAM torus in the limiting case » = 0. Still, for not too small values of
n—especially in the range where fixed points exist—one finds qualitatively the same
behaviour for any other choice of the frequencies w,.

For these parameters we find three types of attractors on the strange ‘Rossler
torus”:

(i) For very large n-values there is a ‘Rdssler-like’ attractor near the origin, centred
around an unstable fixed point (cf section 3.1 and figure 1). Near = 1 one finds
a simple limit cycle in its place which goes through a sequence of period doublings
when n is increased, of figure 2. The attractor turns chaotic near n =~ 170. Periodic
windows (e.g. of period three) are found at higher n-values. This interpretation of
the transformation of the attractor with increasing n is confirmed by the fact that
Crutchfield et a/ [19] have shown that by varying control parameter ¢ in Rossler’s
system (3.15) one proceeds via a period-doubling sequence from a simple limit cycle
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to Rdssler’s strange attractor.

(ii) The positions of the fixed points may be calculated analytically by solving a
quadratic equation for sin ®, ;. Thercfore, one finds two sets of fixed puints, each
containing 2* = 8 fixed points, <f section 3.2. The eigenvalues of the fixed points are
found by solving the cubic characteristic equation related to the 3 x 3 matrix in (3.24).
As long as the fixed points are real-valued (i.e. for n > 1) each set of fixed points
contains a point attractor, Note that real-valued fixed points exist only if « is not too
small (at n = oo, e.g., the value of the scaling parameter must exceed o = 28.47 or
a = 0.04, respectively, for the two sets of fixed points).

(iii) For > 1.6 one has, in addition, a limit cycle which attracts most trajectories
out of the sample we used in our search for the attractors. The projection of this
limit cycle onto the (®,,®,)-planc is centred arovnd ¢, = ¥, = 7 and D,(¢)
increases monotonically in steps of width w, varying with the same period as do @, (¢)
and ®,(t). Therefore one finds a closed curve in the coordinates (®,, ®,,sin &,),
cf figure 3. It is easy to understand this behaviour qualitatively by expanding the
equations of motion around sin ®,_, , = . In a certain sense this is typical ‘Rossler
behaviour’. Therefore, we refer to it here as the ‘generic’ limit cycle. Below n = 1.6
period doubling sets in and the attractor turns chaotic—cf figure 4—before it vanishes
near n = 1.53.
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Figare 2. The limit cycle near the origin of the ‘Rdssler torus’ beyond the second
period-doubling transition; 7 = 160,

t Réssler characterizes the principle underlying his system (3.15)—and others generating ‘spiral-type’
chaos—as follows: ‘'combining a two-variable oscillator {in this case « and y) with a switching-type
subsystem (z) in such a way that the latter is being switched bty the first while the flow of the first is
dependent on the switching state of the latter® [13].
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Figure 4. The ‘generic’ periodic attractor on the ‘Réssler torus’ has wmed chaotic
n = 1.536.

Notwithstanding some differences in detail, the overall picture of the motion on
the isolated strange ‘Lorenz-torus’is very similar to this behaviour on the isolated
strange ‘Rassler torus’ [6] (cf the footnote in section 5).



274 A von Kempis and H Lustfeld
4. Non-isolated non-regular Hamiltonian tori

As we have seen in section 1 non-regular tori need not be isolated in phase space. In
the following section we demonstrate that the attractors of (qQuasi-)periodically driven
systems may occur on non-isolated non-regular tori forming invariant planar areas
in phase space, In section 4.2 we show that the finite dimension n of the invariant
manifold M, in action space formed by the non-regular tori leads to important
consequences for the flow on the tori: the number of vanishing Lyapunov exponents
is constrained to be > n, and periodic motion may be impossible if n > 2.

4.1. Attractors of (quasi-)periodically driven systems on non-regular tori

Since the matrix 8F /381, in the equations of motion (1.5) has rank m = N —n there
always exists a linear canonical transformation such that the transformed equations
of motion have a same simple structure: n of these equations are trivially integrable,
and their solutions depend linearly on time. Inserting these solutions into the other
equations we are left with m = N — n non-trivial equations explicitly depending on
time. In general an appropriate rotation of the coordinate axis is necessary in order
to reduce the equations of motion (1.5) to this simple form and the transformed
coordinates need not be angles (cf the detailed discussion in [6]). Here we restrict
ourselves to the simplest case where the system of equations of motion is separated
into n trivial equations and m = N —n others without further transformation. As an

example let us apply the procedure of section 3.1 to the periodically driven Duffing
oscillator

&+ pi + kyw’z + ke® = a, c0s(w;?) 4.1)

where ky =1 or ky = 0 (in the latter case one has a purely anharmonic oscillator).
Substituting «; = « and », = &;/w one arrives at a non-autonomous system of
two first-order differential equations. Proceeding as outlined in section 3.1, and
subsequently extending the phase space in order to eliminate the explicit time
dependence by substituting ®; = w,t, one gets the following equations of motion

I
(i)l: w—u‘l;‘?(""*—)+wsin(p2
: wy2(1,) . . kol | 3 a,
o, = - — D, -k o, - — @ -t cos P
2 n p.S!.n 2 stm 1 o Sin 1+waCOS 3
b, = ‘:’ﬂ_l 4.2)

for action values I, on the straight line M, = {I, | I, ; = I;,i = 1,2} (therefore,
n = 1). Thus, the procedure yields invariant 3-tori forming a four-dimensional
invariant manifold in the six-dimensional phase space.

For sufficiently large values of the scaling parameter oo we find the well known
attractors of the periodically driven Duffing oscillator [14,15] near ®, = &, = 0 if
wgq = wp, = 0 and n = 1 (note that the scaling increases the nonlinearity but
decreases the driving force). These attractors are periodic or chaotic ones, depending
on the value of the driving amplitude ;. Figure 5 shows such a chaotic attractor
(the time step chosen is not small relative to the average time of revolution on the
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Figure 5. A strange attractor of the periodically driven Duffing osciltator found near
P, = ®; = 0 on a ‘Duffing 3torus’. Lyapunov exponents: X\; = 0,097, Ay = 0,
A3 = —0.297. Parameters: u =02, kg =L k=L w=w;=1,a; =55 n=1and
a =109, Time step At = 0.5, T/A¢ = 20000 points displayed.

attractor). For the Lyapunov exponents given in the legend one has A+ A4 A; = —u
as required for a system with a constant value of the Jacobian (cf [20, ch 7.1]).

Equations (4.2) describe the motion of an electron—which has the appropriate
momentum—with two spatial degrees of freedom (z ard ) in a periodically time-
dependent field. However, if one identifies

$E2r=  and ;= wys(L) (4.3)
(]

cf the last paragraph of section 2—these equations describe the motion of an electron
with three degrees of freedom in a stationary field. In this case the action variable I,
has a direct physical interpretation, namely [y ~ 2 = constant (since A, = 0). Thus
we see that even in the simplest case where the equations of motion are separated
into trivial and non-trivial ones from the outset (without further transformation) they
may be autonomous ones, rather than being only formally autonomous as our original
equation (4.2).

As another example we apply our standard procedure to quasiperiodically driven
Duffing oscillators, i.e. we replace the driving force in (4.1) by a sum 3., a; cos(w;t)
containing two or more (generically) incommensurate driving frequencies w;. We thus
arrive at a system of equations of motion which s a trivial extension of the system
(4.2). Clearly, periodic motion, and thus the occurrence of periodic attractors, is
excluded in the generic case of incommensurate driving frequencies. As the number
m of non-trivial equations is fixed (m = 2 in the Duffing case) the equations of
motion describe the motion of an electron with two spatial degrees of freedom in
quasiperiodically time-dependent electromagnetic fields. However, if we insert (4.3)
and let n = 2, we find that the equations also characterize the motion of an electron
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with three spatial degrees of freedom in periodically time-dependent electromagnetic
fields. Treating ‘time’ and energy again as canonical variables in an enlarged phase
space the trajectories of the electron are situated on invariant 4-tori forming a six-
dimensional invariant plane in the eight-dimensional phase space. We study a purely
anharmonic Duffing oscillator, ie. kg = 0, and set o = 1 {no scaling). Thus we
do nor expect to find the attractors of the original quasiperiodically driven Duffing
oscillator oscillator near ®; = @&, = 0 for wp; = wy,; = 0 and n = 1. At small
driving amplitudes a,_, , we find there aperiodic attractors with a Lyapunov spectrum
of the form (0,0,—,—). The motion on one of these regular aperiodic attractors is
shown in figures 6 and 7. Whereas the latter contains a Poincaré plot for a fixed
value of &, the former displays a projection into the (®,, ®,} plane (the time step
chosen in this case is again not small relative to the average time of revolution on
the attractor). One should note that the details of this picture change markedly if
the time step is only slightly varied whereas the general impression of regularity does
not. Reducing as it does the dimension by one, the fact that the Poincaré section
of the attractor yields a simple curve proves that the attractor is really a—already
somewhat distorted—2-torus in the four-dimensional space of the angles. If one
enhances the driving the torus ‘breaks up’, as is clear in figure 8 (3 projection into
the (®,, ®,) plane gives a more or less uniform distribution of points which is slightly
more extended than the one in figure 6).

02

_')‘1_

_0 2_

Figure 6 Projection of a regular non-periodic atiractor on a ‘Duffing 4-torus’ into
the ($;,P:)-plane. Lyapunov-exponentss Ay = Ay = Q, Az = -0.0¢, A\, = —0.06.
Parameters: p =01, kg =0, k=1L, w=1 w) =0, wy =03, a1 =0.1, a3 =0.2
and 3 = o = 1. Time step At =0.5, T/At = 5000 points displayed.

4.2, Conseguences of the finite dimension of the invariant manifold

In Hamiltonian systems of the form (1.4) non-regular N-tori form invariant areas
with dimensions
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Figure 7, Poincaré section of the attractor shown in figure 6. The value of &, is fixed
(= time step At = 2xfuy)

D,=N+n (4.4)

ranging from N + 1 up to 2N — 1. And yet, these tori have clearly measure zero
in the 2/N-dimensional phase space. This is in contrast t0 KAM tori which fill a part
of finite measure in the phase space of near-integrable Hamiltonian systems having
N degrees of freedom. It is interesting to compare the dimension D, (4.4) to the
dimension Dy, of a manifold of KaM tori having the same normalized frequency

vector § = 02/ | Q2 |. Since there are N free angle variables on these tori which in
turn exist in an energy interval one has

Dpy=N+1, (4.5)

Therefore, non-regular tori can form barrierst in Hamiltonian systems of the form
(1.4) with any number of degrees of freedom whereas KaM tori cannot form batriers
in near-integrable systems with more than mwo degrees of freedom.

Important conclusions can be drawn from the fact that n is the number of relevant
frequencies whereas m = N — m is the number of relevant differential equations: »
of the Lyapunov exponents characterizing the motion vanish whereas the m remaining
ones need not. Chaotic attractors may thus exist if m > 1. This excludes barrier tori
in Hamiltonian systems of the form (1.4). The dimension of the attractors on barrier
tori may still be fractal, ie. one may find strange non-chaotic attractors on barrier tori
if N > 3. Such attractors have been found among the solutions of one first-order
differential equation containing quasiperiodic driving terms (n = 2) [16].

t An invariant (2N — 1}-dimensional manifold is an (jrsurmountable)} barrier for the flow in the 2N-
dimensional phase space if it contains the surface of a 2N -dimensional manifold. Then the flow is
everywhere tangential to that surface, and thus trajectories cannot cross it. Other invariant (2N - 1)-
dimensional manifolds are also barriers (but not insurmountable ones),
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Figure 8. Transition 10 a chaotic attractor on a ‘Duffing 4-torus” Poincaré section of the
attractor shown in the two preceding figures, but now at anhanced driving (all parameters
unchanged except for nq = 0.1625). Again, the value of $,4 is fixed. Non-vanishing
Lyapunov exponents: Ay = 0.01, Ay = —0.09. According to the well known Kaplan—
Yorke conjecture {22] this implies that the information dimension of the attractor is
de 2 3.1, ie. fractal. ’

Periodic motion becomes impossible if n > 2 and the frequencies w;_; .
constituting the right-hand sides of the n trivial equations are incommensurate, Thus,
periodic attractors, ie. limit cycles, cannot exist on these tori if this commensurability
condition is not fulfilled. Of course the attractors may still be regular ones, cf the
example of the ‘Duffing 4-tori’ in section 4.1 (especially figures 6 and 7).

5. Conclusions

We have investigated the motion on Hamiltonian tori which are not of KaM type. The
flow on these invariant tori s—generically—dissipative and non-integrable. Therefore,
attractors can occur on such non-regular tori which may be strange ones in systems
with three or more degrees of freedom. On the other band, non-regular tori may
be reduced to KaM tori if the perturbation is small enough (the measure of the set
of points on the n-axis where such a reduction is possible is finite and tends to 1
with  — 0). Thus, we find a new ‘chaos scenario’: KAM tori which transform into
non-regular ones rather than breaking up when the perturbation becomes strong.
Non-regular tori may be isolated in phase space but need not be. They form
invariant areas with dimensions ranging from & up to 2V — 1. Thus, barriers
consisting of such invariant tori may occur in the phase space of Hamiltonian systems
with any number N of degrees of freedom whereas XAM tori cannot form barriers
for N > 2. The motion on such non-regular barrier tori is always regular, though.
Still, one may find strange non-chaotic attractors there. On non-isolated ones which
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are not part of a barrier chaotic (strange) attractors may occur. A simple procedure
has been used which allows to specify Hamiltonian systems with non-regular tori
containing well known (strange) attractors—and structurally identical repellers—such
as the Rossler attractor or the attractors of the driven Duffing oscillator. Attractors
of autonomous dissipative systems are found on isolated non-regular tori whereas
those of (quasi-)periodically driven systems occur on non-isolated tori. Furthermore,
limit cycles have been observed which transform via period-doubling sequences into
chaotic attractors when the perturbation strength is variedf. On non-regular tori
related to quasiperiodically forced systems regular but aperiodic attractors replace
the lLimit cycles. Fixed points, and hence point attractors, (generically) only occur
on isolated non-regular tori. Although we did not give an example it should be
mentioned that ‘transient repellers’ {22] may exist on non-regular tori as well.

In this paper we present a model of a Hamiltonjan system containing such non-
regular tori, isolated ones as well as non-isolated ones: an electror moving in certain
electromagnetic fields which are periodic in space. Even if these fields are stationary
the motion of the electron on a non-regular torus may correspond to that of a
periodically driven system, e.g. the Duffing oscillator (cf section 4.1). It should be
noted, though, that in our model non-isolated tori form always planar invariant
areas in phase space whereas in general such invariant areas may be non-planar.
Furthermore, we did not attempt to check whether the space-periodic charge and
current densities required for building up the electromagnetic fields can be easily
penerated in an experiment.

The study of the motion on non-isolated non-regular tori has been restricted to
the region near the origin (with respect to the ‘non-trivial’ components) whereas in
the case of isolated tori we have concentrated on the investigation of the motion in
systems with moderate and large perturbations (» > 1). This is justified by the fact
that the flow on tori with (at least) one monotonically advancing angle variable has
already been considered elsewhere [9-12] by exploiting the then possible reduction in
the continuous dynamics to the study of discrete maps (cf section 1).
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